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ABSTRACT 

This paper studies three finite quotients of the sequence of braid groups 
{B. ; n = l, 2 . . . .  }. Each has the property that Markov classes in B~ = HBn pass 
to well-defined equivalence classes in the quotient. We are able to solve the 
Markov problem in two of the quotients, obtaining canonical representatives for 
Markov classes and giving a procedure for reducing an arbitrary representative 
to the canonical one. The results are interpreted geometrically, and related to 
link invariants of the associated links and the value of the Jones polynomial on 
the corresponding classes. 

Let B, denote the n-strand classical braid group, i.e. the group with 

generators o - , . . . ,  tr,_~ and relations 

(1) ~rjo'k = trk~j if t j -  kl_->2, l<=j,k<=n-1, 

(2) trjo-j+~r~ = ~rj÷~o'~o'j.~, 1 <=j <_- n - 2 .  

Let B~ denote the disjoint union 11~=~ B~. The Markov class of /3 E B~ is the 

equivalence class [/3] under the equivalence relation generated by conjugacy and 

the mapping B,---> B,+t which sends /3 to /3(r~'. 
Fixing an orientation on S 3, /3 E B, determines an oriented link type Lo in 

oriented S 3, defined by choosing a geometric representative for the braid/3 and 

then identifying the n initial points of the braid strands with the corresponding 

terminal points to obtain a closed braid. As is well-known the correspondence 

[/3]--->L0 is a bijection, from which it follows that the algebraic problem of 

distinguishing Markov classes in B~ (the "algebraic link problem") is equivalent 

to the topological problem of distinguishing link types. This algebraic link 
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problem is of course hopelessly ditiicult in its most general form, however by 
passing to appropriate finite quotients of B, one might hope to make some 

progress. That, in brief, is the project initiated in this paper. 

Such a program in principle is clearly sound. One may well ask why it was not 

initiated years ago, especially so because it has been known for some time that 

the group B, is residually finite [Ba], so there can be no shortage of quotient 

groups. However,  surprisingly little was known about interesting quotients until 

recently. All that changed when Vaughan Jones introduced in [J-I] new 

techniques for representing the braid groups in naturally nested sequences of 

algebras. Jones gives a one-parameter family of representations r, : B. ---> A,  (t), 

the parameter being t, where the A, (t)'s are finite-dimensional semi-simple 

matrix algebras over C. The algebras A. (t) are described and constructed by 

means of Brattelli diagrams a technique which is closely related to the 

description and construction of the irreducible representations of the symmetric 

group S, by Young diagrams and the Young tableaux. From Jones' construction 

(see §1 below) one learns immediately that there are natural inclusions 

A.  (t)---~ A.+~(t) which induce inclusions i. : 13. (t)---~ B.+l(t). 13. (t) = r, (B.).  with 

i. (/3, (t)) the subgroup of B.+l(t) generated by trl(t) . . . . .  tr,_,(t), crj ( t ) =  r, (~rj). 

These inclusions yield immediately the fact that Markov equivalence in B= 
projects to a well-defined equivalence relation in B=(t) =HT=~ B. (t) which we 

call Markov equivalence in B=(t). 
Cases which are of obvious interest are the values of t for which JR, (t) is a 

finite group for each n => 1. By Theorems 5.1, 5.2, 5.3 of [J-I] this occurs if and 

only if t = 1, i, or to = e i'/3. Our goal in this paper is to describe the groups/3,  (t) 

in these cases, to find unique representatives for Markov classes when we are 

able to do so, and to give an explicit procedure for identifying the class of an 
arbitrary element /3( t )E B,( t ) .  We will also be able to interpret our results 
geometrically. 

The Jones polynomial Vt, (t) was introduced in [J-2]. Note that for each fixed 

complex number to its value VL, (to) is invariant on the Markov class [13] (this is 
how it was discovered - -  see [J-2]) and hence also on [/3(to)] C B=(to). Thus there 

is an added bonus in our work, namely a new and interesting way to try to 

understand the meaning of VL (to). 

Here is an outline of this paper. In §1 we set up notation and review some key 

facts we will need about  the algebras A, (t) and the polynomial VL (t). In §2 we 

treat the almost transparent (but not entirely uninteresting) case t = 1. The 

group /3.(1) is the symmetric group S. on n symbols (Proposition 1). Let 

B=(1)=H:=~B.(1).  The representation rl: B. ----> B, (1) sends each tr, to the 
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transposition sj = ( j , j + l ) ,  and sends /3 ~ B ,  to /3(1)EBo(1).  We will prove 

(Proposition 2) that if/3(1) is a product of k disjoint cycles, then/3(1) is Markov 

equivalent to 1 E Sk, and also 1 E Sk, 1 E Sq are equivalent if and only if k = q. 

Thus Markov classes in B=(1) detect the number of components in a link! Since 

VLo (1)= ( - 2 )  #Lo-I, it follows that VL~ (1) is a complete invarianf of Markov 

equivalence in B=(1). 

The case B=(i) is more interesting, and begins to illustrate the potential in our 

approach. We study it in §3. The groups/3.  (i) were computed "mod scalars" in 

[J-l], and we begin by reviewing and completing the description of the groups. 

We then solve the problem of Markov equivalence, showing that for any/3 E B= 

there is a constructive procedure for finding a unique representative of the 

Markov class of /3(i). Theorem 5 asserts that if gj = ~j(i), j ~ N ,  then the 
following elements represent all distinct Markov classes in B~(i): 

class I.: 1EB,( i ) ,  n=1,2,3 . . . .  

class I1.: g ~ B , ( i ) ,  n = 1 , 2 , 3  . . . .  

class111k.,: g~gZ...g~k_lE13,(i), 2<=2k <--n, n=2,3,4  . . . . .  

Interpreting these results geometrically, we show (Corollary 7) that/3 (i) belongs 

to class I, (respectively II , )  if L~ has n components (respectively n -  1 

components), also each component K C  L~ has even total linking number 

ik(K, L~ - K), also the Arf invariant of L 0 is 1 (respectively 0). In the remaining 

cases (cases III~,,) there is some K C L~ with lk(K, Lo - K)  odd. We prove that 

/30) belongs to class III~.. if and only if L~ has n components and precisely 2k of 

these have odd linking number as above. Thus Markov classes in B=(i) detect 
connectivity, the parity of linking numbers, and the Arf invariant when defined. 

Note that these invariants will also be detected by Markov classes in any family 
B~(p,) such that the homomorphism B, ~ B, (i) factors through B. (/x) for each 

n = 1 , 2 , . . . .  

The relationship between Markov classes in B~(i) and the Jones polynomial 

Vc (i) is interesting. By the results of Murakami ([Mu], [L-M]) the polynomial 

VL (i) distinguishes classes I,, 1I, and III, but takes the single value 0 for all 

/3 ( i )~  111k,., independent of k, n. Thus the noninjectivity of VL (t) is already 

exhibited in the finite quotients B,(i), even though these groups are rather 

transparent in structure and closely related to the symmetric groups B. (1). On 

the other hand, VL (1) is a complete invariant of Markov classes in B~(1). 
Section 4 treats the case t = to = e i'~/3, which is considerably more difficult than 

either t = 1 or t = i. Here we have only partial results: we give descriptions of the 
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groups {B,(oJ); n = 2 , 3 , 4 , . . . } ,  i.e. we show that both B2m+l(oo) and also 

B2,,+2(o9) are finite extensions of the symplectic group Sp(2m, Z3), and we 

describe the kernels precisely, and show exactly how the inclusions B2(oo)C 
B3(oJ) C • • • occur for each n. Note that Sp(2m, Z3) has a center C of order 2, and 

the quotient Sp(2m, Z3)/C is the finite simple group PSp(2m, Z3). The order of 

PSp(2m, Z3) for n ~ 2 is 3"2(3 2 -  1)(3 4 -  1 ) - . - ( 3  TM - 1 ) .  The problem of Markov 

equivalence in B=(w) should be both deep and interesting. We hope to solve it in 

future work. 

§1. Braid groups, the Jones algebra, and the Jones polynomial 

In this section we set up notation and recall basic material. If G is a group, we 

write g for the inverse of g and (g)h for the conjugate/~gh of g, h/E G. The unit 

in G will be denoted la  or 1. When a group G acts on a set V we write elements 

of G on the right and compose elements of G from left to right. If G is a group, 

and g ~ G, then G/(g) means G modulo the normal subgroup generated by g. 

We refer the reader to [Bi] for basic material on the braid groups. The 

fundamental theorem which is known as Markov's theorem was first proved 

there. A particularly elegant new proof is due to Morton [Mo], and a third proof 

is in Bennequin's thesis [Be]. 

Relations (1), (2) will be referred to as the braid relations. If ~: B, ---> (5;, is a 

homomorphism, with gj = ~(~j), we will say that the gj's "satisfy the braid 

relations" or that they satisfy (1)g, (2)g. The braid relations and other related 

relations in the Jones algebra and in quotients of B. will often involve indices, 

and when we omit explicit mention of these we mean, implicitely, to include all 

cases where the relations make sense. 

From the work of Jones in [J-l] there exists for each real positive t and each 

t = e ÷~/k, k = 3, 4, 5 . . . .  and every n = 1, 2, 3 . . . .  an algebra A, = A, (t) which is 

generated by 1 and ( n -  1) projections ej . . . . .  e, ~ with defining relations: 

(3) (3.1) e~ = ej, 

t 
(3.2) e,e~_*,e, - (1 + t) 2 r,, 

(3.3) ejek=ekej if I j - k ]  ->2- 

The algebra A. (t) supports a linear function tr: A.--~ C satisfying 

(4) (4.1) tr(ab) = tr(ba), 

(4.2) t r ( 1 ) = l ,  
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t 
(4.3) t r ( w e . - 0 -  (1 + 0 2 tr w if w E subalgebra generated by 

e l , . . . ,  en-2. 

Conditions (4.1)-(4.3) determine the trace function uniquely. The homomorph- 

ism A. (t)---~ A.+,(t) defined by e~ ~ e~, 1 =< i =< n - 1 is injective, so the algebras 

A. (t) are ordered by inclusion 

(5) 

If we set 

(6) 

A,( t )CA2( t )CA3( t )C . . . .  

trj(t)=V-t(te~-l+e,),  j = l  . . . .  , n - l ,  

then one may verify that relations (3.1)-(3.3) imply that the ~rj(t)'s satisfy the 

braid relations (1), (2). Thus the mapping trj --~ ~ (t) extends to a homomorphism 

r,:/3,--~ An (t). This is the Jones representation of the braid group. It is not 

known whether r, is faithful, however this is almost certainly the case. 

Let /3 .  (t) denote the image of Bn under r,. The inclusions (5) imply that there 

are injective maps i, : B, (t)--* B,+,(t) for each n E N, with i. (B. (t)) the sub- 

group of B.+l(t) generated by trt(t),...,tr,_t(t). From this it follows that 

Markov's equivalence relation projects to a weU-defined equivalence relation 
(which we continue to call Markov equivalence) in B®(t) for each admissible t, 

the equivalence relation being generated by 

(7) (7.1) B,(t) ,~,B,( t) ,  b*-~ba, a, b E B . ( t ) ,  

(7.2) B.(t),~B~+~(t), b~--~b(tr, t) ~, b E B . ( t ) ,  e = - l .  

We call the equivalence classes in B~(t) Markov classes, writing b - c if b, c are 

Markov equivalent. We will refer to (7.1) (respectively (7.2)) as the first 
(respectively second) Markov move. 

If/3 E B.,  the Jones polynomial of the link Lo determined by the closed braid 

/3 ̂  is: 

( t + l ~  ~-~ 
(8) VLo (t) = k _ ~ , /  tr(r, (/3)). 

Regarding t as an indeterminant, it is a Laurent polynomial in X/t. Its invariance 

on Markov classes follows directly from the equivalence relation (7) and 

property (4.3) of the trace function. Its invariance on link types then follows from 

Markov's theorem. This is the key observation which led to the work announced 

in [J-2]. 
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§2. Markov classes in B~(1) 

PROPOSITION 1. The group B, (1) is isomorphic to the symmetric group S. on n 

symbols. The mapping rl sends each crj to the transposition sj = (j , j  + 1). 

PROOF. Equation (6) implies that (trj(1)) 2= 1, so B, (1) is a quotient of the 

symmetric group Sn = Bn/(cry). The quotient cannot be proper because when 

t = 1 the Bratteli diagrams of [J-l] reduce to 2-rowed Young diagrams, defining 

faithful irreducible representaitions of S~, so B~ (1) maps homomorphically onto 

S,. Thus B. (1) --- S,. 

PROPOSITION 2. I f  [3 E B, ,  and [3(1) is a product of k <= n disjoint cycles, then 

/3(1) is Markov equivalent to 1 E S~. Also 1 E Sk, 1 E Sq are in distinct Markov 

classes unless k = q. Two elements of B~(1) are in the same Markov class if and 

only if they are products of the same number of disjoint cycles, including cycles of  

length 1. 

the form IIk=~ Sk, PROOF. Every element of Sn is conjugate to an element s of "-~ ~ 

ek = 0 or 1, 1 --< k =< n - 1. We prove that each such s is Markov equivalent to 1 

in some Sq. If some e k e 0  but e,_~ =0 ,  conjugate by h = sn_~s,_2.., sl. Since 

fas~h = S I +  1 for i = 1,. .  . , n - 2 ,  we see that s - s, '  s '  =[Ik=l sk, '~-I  8k Eek =E~k  and 

~,_~ = 1. Now we can apply the second Markov move to drop s,_~. It is clear that 

the first and second Markov moves do not change the number of cycles in a 

permutation. The assertion now follows by induction on Y. ek. 

COROLLARY 3. I f  a link L has k components, then VL (1) = ( - 2) k-~. 

PROOF. Choose a braid representative/3 E B~ of L = L,.  By Proposition 2, 

[[3] = [lk ]. The assertion follows from equation (7), using property (vii) of the 

trace function. 

Thus Markov classes in B~(1) detect the number of components in a link and 

are in 1-1 correspondence with the values taken by V~ (1), as/3 ranges over B~. 

§3. Markov classes in B~(i) 

In this section we use the results of Jones in [J-1] to solve the Markov 

equivalence problem in B~(i). We then interpret our results geometrically. The 

main result is Corollary 8. 

PROPOSITION 4 (cf. Jones, [J-l]). The group Yo = B. (i) is a central extension of 

a semi-direct product of the symmetric group S, and an Abelian group K , / (C) .  I f  
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yj=tr , ( i ) ,  l _ - < j = n - 1 ,  then y~ . . . . .  y~_~ generate K~. For odd n, y~ . . . . .  
4 y~_~ = C generates the center, which is of order 2. When n is even, the element 
2 2 2 Yly3" ' "  yn-~ is also in the center. Its square is 1 or C, according as n - 0  or 2 

(mod 4). 

SKETCH OF PROOF. We repeat  here  that  part  of Jones '  a rgument  which we will 

need in our  work.  By equat ions  (6) we have yj = ~/i(iej - 1 + ej), which implies 

(1)y, (2)y, and y~ = - 1. In particular,  y~ is a scalar in An (i), belongs to the center  

of Y,, and has o rder  2. Thus  we have the relat ions 

(9) y~yk = yky~, 1 _-< j, k _-< n - 1, 

(10) y~ = 1, 1 <~ j <= n - 1, 

(11) y~-- y~ = - "  4 • ~ y n - l .  

Using the special relat ion ekek+l + ek+~ek = e~ + ek+~ -- 1/2, which was discovered 

by Jones,  in the Algebra  An (i), one  verifies that 

(12) 2 ykyk±lYk = y~,_*l- 

Moreover ,  (1),, (2),, (9), (10), (11), (12) are defining relat ions in Y, (see [J-l]). 

Note  that  the relat ions just given imply the additional relat ions 

(13) 2 2 2 -2 2 2 
YkYk*-l = yky~,-*l~k = Yk*-lyk = -- Yk*-lyk 

where  as before  - 1  may be identified with y~. F rom (13) it follows that  the 

subgroup K~ of Y, which is genera ted  by y~, y ~ , . . . ,  y~ t is normal  in Y, and 

contains the scalar - 1, which belongs to the center .  If n is even,  the e lement  
yl2y~.. .  2 y,_~ is also in the center ,  by (9}-(13). It is a sum of e~'s with non-zero  

coefficients, and its square is + 1 or - 1 according as n ~ 0 or 2 (mod 4). 
Z2 , the The  quot ien t  K ~ / ( - 1 )  is abelian and may be identified with "-~ 

2 genera tors  of the Z2-factors being y ~ , . . . ,  y.-~. The  quot ient  Yo/K,  ~ Sn. This is 

clear because Y . / K ,  has generators  y l , . . . , y , - I  and relat ions (1)~, (2)y, and 

y~ = 1. One  can also prove that the extension 

1 - ~  K. / (y~} - - )  Y~/(y~)---) S. --~ 1 

splits, giving the required  semi-direct  product  s t ructure on  Y~/(y~). However ,  

since we do not  have any use for the splitting map,  which is subtle, we omit  it. 

(Caution:  the map given in the preprint  of [J-l] seems incorrect ,  and merits 

checking.) 

REMARK 4.1. For  n even the action of Sn on K,,/(y~)~-Z'~ -~ leaves 
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2 2 2 y~Y3" " " yn-~ invariant,  so there is an induced action on Z~ -2. It seems interesting 

to note  that for n = 4 (and only n = 4) this action is not  faithful. In the case n = 4 

the genera tors  y~, y3 act in the same way, and y~y3 genera tes  a normal  subgroup 

n of S4 of order  4 with SdN-~  S~. 

THEOREM 5. The following elements are distinct representatives of all distinct 

Markov classes in Y~ = l d ~  Y, : 

c l a s s I . :  1 E Y . ,  n = 1 , 2  . . . .  , 

class I I ."  y ~ E  Y,, n = l , 2  . . . . .  

class I I Ik .  2 2 2 • " y l y 3 " " y 2 k - , E Y . ,  k = 1 , 2  . . . .  ; n ~ 2 k .  

PROOF. Using relations (1), (2), (9)--(13) it is easy to see that each y E Y,, is 

conjugate  to an e lement  of the form 

n--1 n 1 
2 ~j ~a 

(14) Y =  + I - I  YJ [-I Y k, where each e .  8~E{0,1}.  
]=1  k = l  

(Note:  This conjugat ion  may change the sign f rom +-1 to -;-1.) 

Assume  that  y #  y~, so that  in particular n > 2. Using Markov  moves,  we now 

prove that y can be t ransformed to an e lement  y '  in the form (14), but  with all 

& = 0. If 6.-i = 0, we conjugate  by h = y, ,y. e" • • y~, which takes y, to y~+~ and 
2 y._,  to some product  of squares. Thus  if we conjugate  by a suitable power  of h 

we will get an equivalent  e lement  with 6. , = 1 and Y. & unchanged.  If e._~ = 0, 

we can then use Markov  move  2 to drop y._,. If e,_, = 1, replace y with 
2 y '  = (y)y,,_~. Then  

y ' =  _+ yj Y~ y~-~. 
J=~ k = t  

Replacing 3 y .  ~ with -)7._~, we can drop  y,_j by Markov ' s  move  2. Thus,  by 

induct ion on Z & we can assume that all 6k = 0. 
n- - I  2era 

Continuing,  choose  a representat ive of the form +I-I,,=, y~ which contains,  

a m o n g  all such representat ives,  a minimal number  of non-zero  e,~'s. For  this 

representat ive  we now show that e,~_~e,~ = 0 for each m => 2. Suppose  not.  Let  j 
n - 2  2¢~  

be the highest index for which e i -zej#  0, in the product  ---Flm=~ ym . By relat ion 

(12), we have 

2 2 Y/-lYi = 2 3 YiYj-IYi = z - -- yiy/-t yj- 

But  then, after  conjugat ing by yj, we would have a p roduc t  with fewer  nonzero  

~ ' s ,  contradict ing our  hypothesis.  Thus each adjacent  pair  8,._~e,, must  be 0. 
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But  then,  we have  

y ~ +  ~ 2  2 2 2  2 2 =>1. - - y l y 3 " ' ' y 2 k + l ~  + - - y l y 3 " ' ' y 2 k - l y . - l ,  if k 

Using this last fo rm,  we can show that  the ambigui ty  in sign can be r e m o v e d  for: 

_ _  y ~ y ~ . .  2 2 2 2 2 z 
• Y2k-ty,-1 ~ . . . .  YlY3 y2k - ly , - l y ,  

_ 

• Y2~-IY.- ty ,y ,  Y ~ " "  = Y2k-lY.y. - ly .  

Z 2 3 2 - 2 2 2 2 * 
= y.Yl"  "Y2k-lY.-ly.  y] . . . . . .  • ~ Y 2 k - l y . - l y .  "a y~ Yzk-lY.-1. 

Thus  each  e l emen t  in Y= is e i ther  in class I I I ,  or  else it is a power  of yr. 

M o r e o v e r ,  the power ' o f  y~ may  be  assumed  to be  ~ 2, 6, because  those  cases are 

subsumed  in class I I I .  

Finally, suppose  y - y~ ~ Y,. Note :  y~ ~ y~Xaid, and 

5 5 5 - 5 -  - 5 3 ~ y . - l y .  " a y . - i  ~ y, ,  yl ~ y . - I  Y. - ,y .  y . y . - ,  ~ Y,,-lY. ~ -- Y.-IY- = 3 3 

also 

Thus  y is equiva len t  to 1 or  y~. Thus  each  y is in one  of the classes I . ,  I I .  or  

IIIk... 

W e  shall need  to distinguish the classes• We  begin by comput ing  VLo (i)  a s /3  

ranges  over  braids  in B= which pro jec t  to represen ta t ives  of  L ,  I L ,  IIIk,..  No te  

that  the possible  values  of VL (i)  are known  ([Mu], see also [L-M]) ,  howeve r  we 

need someth ing  a little more  precise  because  we want  to identify the values  of 

the po lynomia l  on our  explicit representa t ives .  In te r rup t ing  the p roof  of  

T h e o r e m  5 for  the m o m e n t ,  we establish 

PROPOSITION 6. L e t  fl E B=, a n d  let y = ri (B ) .  T h e n  

( - -  V 2 )  n - 1  

VL. ( i )  = - ( -  

0 

i f  y E class I . ,  

i f  y E class I I . ,  

i f  y E class IIIk... 

PROOF OF PROPOSITION 6. Use  equat ions  (4) and (8), with t = i, to c o m p u t e  

VL~ (i). This  gives the values  on classes I .  and  I I ,  immedia te ly .  In  the case of 

* Here ,~ and ",a denote applications of Markov's second move, increasing and decreasing index 
respectively. 
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class III the computation is aided by noting that 

2 2 2 
y,Y3" • • Y2k-~ -- ( -  1)k ( 2 e l -  1)(2e3- 1 ) . . - (2e2k- i -  1). 

By (4.3) we see that if jl < j 2 < ' " < j , ,  then tr(2e; , .2e~. . -2e; . )= 1, whence 

VL~ ( i )=  0 on class III. 

REMARK 6.1. The reader may notice small inconsistencies between our value 

of VL (i) and those which can be computed from the tables in [J-2] or the main 

result of [Mu]. The values which we give above are internally consistent, using 

the conventions in this paper. However, comparing them with the values in [J-2] 

we remark that the conventions in [J-l] and [J-2] are not the same, also there is 

an inconsistency in [J-2] between equations I-VI and Theorem 12. As for [Mu], 

there is a choice of sign in X/i which is the wrong choice for our work here. 

Returning to the proof of Theorem 5, we are reduced via Proposition 6 to 

showing that distinct pairs k, n yield distinct Markov classes of type IIIk.~. For 

this we pass to geometry. Let /3  E B~. We say that/3 has property P(k, n) if L~ 

has n components M , , . . . , M ~ ,  of which precisely 2k, k =>0, have odd total 

linking number lk(M,, L - Mj). 

LEMMA 7. Suppose that /3, /3' E B~, and that y = r, (/3 ) is Markov equivalent to 
y ' =  r i(/3') in Y~. Then /3 has property P(k,n)  if and only if~3' has property 
P(k, n). 

PROOF OF LEMMA 7. As noted earlier, (1)y, (2)y, (9)-(12)are defining relations 

in Y~. Since (1), (2) are defining relations in Bn, it follows that 3' E B~ is in the 

kernel of some ri:B,--~ Yn if and only if y is a product of conjugates of 
4 - 4  - 8 2 - 2  O'IO'20"IO'2, Orl, O"10"20"10"2 . A few pictures suffice to show that/3 satisfies Property 

P(k, n) if and only if/33' does. Since the modification of/3 by Markov moves in 

B= does not effect Property P(k, n), and since each Markov move in Y= lifts 

(mod y) to a Markov move in B~, the assertion is true. 

Lemma 7 shows, immediately, that (k, n ) ¢  (k', n') implies that (class IIL..)  N 

(class IIIk,,,,) = 0 ,  and so the proof of Theorem 5 is complete. [] 

The Arf invariant A (Lo) of Lo is a cobordism invariant which has values in Z2, 

and is well-defined only when 13 satisfies property P0,,. By Lemma 7, this means 

that A(Lt3) is well-defined if and only if y = r~(/3) is in class I° or II, .  By [Mu], 

A (L) = 0 or 1 according as VL (i) = ( - X/2)"-' or - ( - X/2)"-1, i.e. according as 

y E I .  o r l I . .  
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COROLLARY 8. Let [3 E B~, and let Lo be the link determined by the closure of 

[3. Let A(L~)  be its Arf-invariant. 

Let classes I, ,  II , ,  IIIk., be as described in Theorem 5. Then these are a complete 

list of distinct Markov classes in B=(i), and r, ([3) belongs to: 

I, if and only if L~ has n components Ml . . . . .  M,,  and lk(M~, L~ - ~ )  is even 

for each j = 1 , . . . ,  n and A(L~)=O;  

II, if and only if L~ has n - 1 components M r , . . . ,  M,_~ and lk(M~, L~ - Mi) 

is even for each ] = 1 . . . .  , n - 1 and A (L~) = 1. 

IIIk., if and only if L~ has n components Mt . . . .  , M, and lk(Mj, L~ - M~ ) is odd 

for precisely 2k of these. 

We conclude this section with an example which answers a question of Joel 

Hass in the affirmative, showing that there is information in Markov classes in 

B~(i) which is not detected by either the 1-variable or generalized 2-variable 

Jones polynomial, or the skein equivalence class. 

EXAMPLE 8.1. Let K1 = K ,  tO K12 U Kl3, /(2 = K2t U K22 U/(23 be two copies 

of a 3-component link, chosen so that the linking numbers L~ = lk(Kij, Ki - K~j) 

are {h,, L2, L3} = {1, 1,1}. Form the connected sum K~ # / (2  in two ways: for L, 

take the connected sum along K~2 and/(22; for L ' ,  take the connected sum along 

K~ and K2~. Then L has linking numbers {1,4,1,1,1} and L' has linking 

numbers {2, 2, 2, 1, 1}. Thus L E III4,5, L ' E  III2,5. Since the Jones and generalized 

Jones polynomials are multiplicative under connected sums, the links L and L '  

have the same Jones and generalized Jones polynomials, and are skein- 

equivalent. 

§4. The groups {B, (o)),o~ = e i~/3, n EN} 

The groups/3, (o9) were only described in [J-l] for small values of n, and then 

only modulo scalars. Our goal in this section is to give a detailed description. The 

main results are Theorems 10 and 11. 

In order to do so, we will need some detailed information about the sequence 

of symplectic groups Sp(2m, Z3). These were studied by the second author in 

[W], and so we begin by recalling the relevant results from that manuscript. In 

what follows it may be helpful to keep in mind that the symplectic transvections 

h~, h2,. . ,  to be introduced below will ultimately be identified as the images of the 

elementary braids ~rl, ~r2,... under a surjective homomorphism from B,.+~ onto 

Sp(2m, Z3). Note that Sp(2m, Z3) modulo its center is the simple group 

PSp(2m, Z3). 
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Let  V2,, be a vector space of dimension 2m over Z3. Let ( - , - )  be a 

nondegenerate alternating form on V, and let vl . . . .  , v2,, be a basis for V2,, such 

that (vi, v~+l)=l and (vi, v j ) = 0  if l i - j t > - _ 2 .  Let H2,.+l=Sp(2m, Z J  be the 

group of symplectic transformations of V2m. Let hi = T~, be the symplectic 

transvection with respect to v,, that is the transvection defined by (v)h~ = 

v - ( v ,  v~)vi for each v ~ V2m. For each n _>-3, let H, i be the subgroup o f / 4 .  

generated by h~ . . . .  , h, 2. Let 

(15) x = [(hl)h2h3h2h4fi3h4l [(hl)h2h~h2] [hi] [h3l. 

THEOREM A (Wajnryb). For each  n >=2 the group H .  is generated  by 

h, . . . . .  h .  1. D e f i n i n g  relat ions are the braid relat ions (1)h, (2)h and  

(16) h~ = 1, 

(17) x = 1 ( w h e n  n >= 5). 

REMARK (A1). The subgroup H2,, i of H2m+l generated by h , , . . . ,  h2,, 2 acts 

on the subspace V2,,-2 of V2,, generated by V~ . . . . .  V2,,-2, and so may be 

identified with Sp(2m - 2, Z~). 

REMARK (A2). If g is a symplectic transformation, u and v vectors with 

v = (u )g ,  then To = ( T , ) g .  For example, 

(v,)h2fl3h2 = Vl - v2 - v3 - 2v2 -= v, - v3 (rood 3), 

so T ... . .  = (h~)h2h~h2. The somewhat mysterious relation x = 1 in Theorem A 

may then be clarified by noting that: 

h, = T~,, h3 = Tv .  (h,)h2h3h2 = T . . . . .  (h~)h2h~h2h4h3h4 = T . . . . .  . 

Thus 

x = T  . . . . .  " T ~ , _ o ~ . T o , . T v ,  

and relation (17) asserts that this product is 1. For details, see [W]. 

REMARK (A3). We will see later (see the proof of Theorem 11) that the 

subgroup/42,,  of H2,,+, ~ Sp(2m, Z3) is an extension of Sp(2m - 2, Z0  ~- H2,,-1. 

The kernel of q~:/-/2,, ~ H2,,-~ modulo its center is isomorphic to the direct sum 

of 2m - 2  copies of Z3. Also, we will see that the vector space V2,, 2 of Theorem 

A has a natural interpretation in terms of a suitable alternating form on (2m - 2) 

of these copies of Z3. 

Recall that in [J-l] Jones proved that the algebra A, (to) is a subalgebra of a 
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larger algebra/9. ,  where D, belongs to a nested sequence of algebras D2 C D3 C 

• "" generated by unitaries 1, u~ . . . . .  u,_~ with defining relations 

(18) (18.1) u ~ = l ,  j = l , . . . , n - 1 ,  

(18.2) UkUk+~ = Wttk+lUk, W = toe = e2,~i/3, 

(18.3) ujuk=u~uj i f [ j - k  1_->2. 

Define ek =ek(to)  by ek = ~ ( l + u k  +u~). Jones proves that AN(to) may be 

regarded as the sub-algebra of D,  generated by 1, e, . . . . .  e,_~. It follows from 

(18.1)-(18.3) that relations (3.1)-(3.3) are satisfied in A, (to). 

Setting gk = X/to(to2ek - 1 )  we get a representation r ~ : B , - - * A ,  (to), defined 

by O'k--~gk, l < = k < = n - 1 .  Let G, = r~(B,). 

LEMMA 9. L e t  

x~ =[(g,)g2~3g2g4bgn][(g,)gebg2][g,][g3]~G,, n>=5. 

Then xg represents the identity element of G.. 

PROOF. A computer calculation shows that r~ (xg) represents 1 in As(to), and 

thus in An (to) for n -> 5. 

We now describe the relationship between G, and/4 , .  Later, we will uncover 

further the structure of H, ,  when n = 2m is even. 

THEOREM 10. For each n >= 2 there is a surjective homomorphism 0: G, ~ H. 

de[ined by ~b(gk ) = hk, 1 <= k ~ n - 1. The kernel of q~ is the cyclic group of order 4 
generated by g3. The element g~ belongs to the center of G,. 

PROOF. By Theorem A and Lemma 9, the kernel of ~ is the normal closure 

of g] in G,.  The generators u~ . . . .  , u,_~ of D,  are invertible. Let U. be the group 

which they generate. It has order 3". Then G, acts on U., and the action is easily 

computed to be given by: 

{ uj 

(19) (uj)gk = gkuigk = ffUjSk 

WUjUk 

i f [ j - k l ~ l  t 
if j = k - 1  

i f j = k + l  

where w = to2 = e2~ri/3. 

If an element g E G, acts trivially on U,, then it acts trivally on Dn, and hence 

belongs to the center of D. ,  and thus also to the center of Gn. Now g3 = _ i, 

hence g~ belongs to the center of G, and has order 4. Let K be the cyclic 
subgroup generated by g3. 
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The quotient G . / K  acts on the group U,, and it acts trivially on the scalar 

w ~ Un, w = to 2. Therefore  there is an induced action on the vector space 

U,/ (w)  ~ (Z3)"-'. Anticipating that Un/(w) will be identified with the vector 

space V,_~ of Theorem A, we write vk for the image of uk in Un/(w). Assume 

n = 2m + 1. We define an alternating form on U2,,+,/(w) by setting (v~, v~+l) = 1, 

(v~, vj) = 0  if li-jl>-_2. The image hk of gk, 1-<-k =<2m, in G2m+I/K acts as a 

symplectic transvection with respect to vk, i.e. (v,)hk = v~ -(v~, Vk)Vk. Therefore  

we have an isomorphism G2m+dK=H~m+~-Sp(2m, Z~). Since G2,. is the 

subgroup of G2,,+~ generated by g~ . . . . .  g2,, ~, we also see that G2m/K ~ H2~. 

Let 's summarize what we know about the  groups H, .  They are ordered by 

inclusion 1-12 C/43 C/44 C • • -. Generators  and relations are given in Theorem A. 

Each odd-indexed H2m+~ is isomorphic to Sp(2m, Z3), and H2,, C H2,.+~. We now 

ask how H2m, H2~-I are related, and investigate the groups/-/2,, in some detail. 

THEOREM 11. The groups {Hn, n >_ 1} have the following properties. 

11.1. The center of H2~ is a cyclic group of order 3, generated by C = 
(hth2"'" h2~ 1) TM. 

11.2. There is a split exact sequence 

1---* A ~ H:,~I(C) *" , H2m_,~ l 

and the kernel of q~. is an abelian group A which is the direct sum of 

(2m - 2 )  copies of Z3. 

11.3. Regarding the abelian group A as a vector space over Z3, there is a natural 

alternating form on A, and the action of H2m-, on ker qP. in (11.2) is the 

symplectic action. 

11.4. The jth summand in A, 1 <- j <-_2m - 2 ,  is generated by an element aj of 

order 3, defined by 

a2m-2 = h2,,-2 Tw, 

where Tw defined by formula (24) below. 

aj = (aj÷~)/~÷l [ o r l = l , 2 , . . . , 2 m - 3 .  

PROOF OF THEOREM 11. The proof will be via a sequence of lemmas. 

LEMMA 12. Each h E H2m leaves V2m-1 invariant. The element c E H2,, acts 

trivially on V2m-l. Thus H2,./(c ) acts on V2,, 1. The element c 3 ~ H2,~ acts trivially 

on W2ra. 

PROOF. By definition,/-/2,, is generated by hi . . . . .  h2;~-t, and is a subgroup of 
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n 2 m + l ,  which is identified with Sp(2m, Z3). Therefore  the first assertion is 

obvious. 

To see that c acts trivially on V2,.-~, recall that it follows from the braid 

relations (1)h, (2)h that 

(20) ( h ~ h 2 . . .  hk) k+~= [ ( h ~ h 2 . "  hk-~)k][hkhk-~ "'" h2h~hz"" hk-~hk], 

and also that the bracketed terms on the right in (20) commute. (These are 

well-known facts about B,,  and hence also about any quotient of B,.) Let  

h = h k h k - l " ' "  h 2 h ~ h 2 . . ,  hk- lhk .  

By Theorem 9, the group H,, is a quotient of G,,  and the action (19) of G, on U~ 

induces an action of /4, on U,, and therefore also on V ,  ~ ~ U, : / (w) .  One 

computes that 

(21) ( v ~ ) h = - v ,  i f i < k ;  

(Vk )h = -- vk -- vk-,  - V k - 3  . . . . .  1 . ) 3 - -  I)1 

: ~)k - -  ~ ) k - 2 -  ~ k - - 4  . . . . .  1 . ) 3 -  ~)1 

(vk+l)h = Vk+l -- Vk-t . . . . .  V 3 -  Vl 

: /')k+l - -  ~)k - -  ~ ) k - 2  . . . . .  1 ) 3 -  ~)1 

if k is even, 

if k is odd; 

if k is even, 

if k is odd. 

It follows by induction on i that for i_-< k the element vi is mapped by 

( h l h 2 . . .  hk)  k*~ onto vi if k is odd and onto - v i  if k is even. Since c = 

( h ~ h 2 . "  h2,, ~)2,., this shows that 

(22) ( v , ) c  = vi if i =  1,2 . . . . .  2 m - l ,  

(23) (v~, , )c  = v~m - (v,  + v3 + ' "  + v~,,-l).  

Equation (22) shows that c acts trivially on V2,.-1 and (23) shows that c 3 acts 

trivially on Vz,,. This proves Lemma 12. []  

LEMMA 13. T h e  act ion o f  H 2 m / ( c )  on Vz , , - i  is fa i th fu l .  

PROOF. Let D0=l)l"~-l)3-~-'''-[-1)2m_l . Then (23) asserts that ( v z m ) c =  

v2,, - v0. Suppose that z E Hz, .  is any element which acts trivially on V2,.-I. Let 

v = ( v z m ) z -  vz,. .  Since z is symplectic, it preserves the alternating form on 

V2,.-1, therefore 

( v .  v:m + v ) = ( v , , ( v : ~ ) z ) = ( v , , v : ~ ) ,  
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hence (v~, v)  = 0 for i = 1,2 . . . . .  2m - 1. The  only vectors  with this p rope r ty  are 

0, vo, - v 0 ,  so v = 0 ,  vo, or  -Vo.  T h e r e f o r e  ( v 2 , , ) z -  vzm = 0 ,  v0 or - v ~ .  F rom 

(23), we conclude that  z = 1, c or  6, and the p roof  is comple te .  [ ]  

LEMMA 14. There is an exact sequence 

1 --, (Z~)~'-2---~ 1-12.,/(c) ~ ' ,  Sp(2m - 2, Z3)---~ 1. 

PROOF. The  subgroup/ - /2 , . - ,  of H2,,+1 gene ra t ed  by h~ . . . . .  h2,, ,-2 acts on the 

subspace  V2,. 2 of V2,, spanned  by vl . . . . .  v2,,-2, leaving it invariant .  Thus  we 

may  identify /-/2,.-1 with Sp(2m + 2, Z3). 

Let  w = vl + v3 +"  • • + v2,,--~, and let Tw be the symplect ic  t ransvect ion  with 

respect  to w. Then  Tw E H,.,,_,, and for  future  use we note  that  it is the fol lowing 

produc t  of hi . . . . .  h:,._~: 

(24) Tw = (hl)h2h3hah4h~hsh4hahs"" h2,, 3/~2,, 4hem 2h2,n-3h2,.-~. 

We define ~o: H2m-.---~H2m 1 by q~(hj) = hj if j<=2m - 2  and qo(h2m_l )  = Zw. T o  

see that  q~ extends  to a h o m o m o r p h i s m ,  we consult  T h e o r e m  A. The  only 

re la t ions in/-/2,, which are not  au tomat ica l ly  satisfied in q~ (/-/2,,) are those which 

involve q~(h2,, 1)= Tw, and for these it suffices to check 

(25) hjTw=Twhj i f j _ < - 2 m - 3 ,  and h2,, 2Twh2,,, 2=Twhe,,,-2Tw. 

T h e  first is a consequence  of (vj, w ) =  0, the second follows f rom (v2,~-2, w ) =  

-1 ,  so ~0 is a h o m o m o r p h i s m  as claimed.  

We  next assert  that  c E ker  ~o. For  this it suffices to show that  q~(c) acts trivially 

on V2,,-2. Now,  by (20) we have 

¢p(C)  = [ ( h , h 2 "  • • he,,,-2)2"-l][Twh2., 2 " "  h2h2h2 "'" ha,.-2Tw]. 

To compu te  the act ion of ~o(c), note  that  (vj)Tw=vj for j < = 2 m - 3  and 

(v2,,-2)Tw = v2,,-2 + w. Formulas  (21), (22), (23) then show that  ~o(c) acts trivially 

on V2,,-2, and so c E ker  ~p. 

Let  I":/-/2,. ~ H2m/(c)  be  the canonical  h o m o m o r p h i s m ,  and  define/~i = r(h~), 

j _<-2m - 1. Then  ~o induces ~o,: H2.,/(c)---~ 1-12,, ,, with q~,(/~j) = h,, j _-<2m - 2 ,  

qo(/~2,._,) = T . .  O u r  final task is to descr ibe kernel  ~o,. Since c E center  H2,,, and 

since Tw E/-/2,,  1 C H2,., it suffices to identify the smallest  no rma l  subg roup  of 

H2m which contains  /~2,, ~Tw. Let  a = h2,. IT , .  We  now assert  that  any two 

conjugates  of a c o m m u t e ,  and have  o rder  3. It  is easy to check the act ion of 

c o m m u t a t o r s  [PaP -~, O a O - ' ]  on V2,,-,. O b s e r v e  that  (v~)a = v~ for  i <=2m - 3  



176 J . S .  BIRMAN AND B. WAJNRYB Isr. J. Math. 

and (v:,.-2)a = t)2m-2 "31" V0, where Vo = v~ + v3 + • • • + 02m--l-  Also Vo is invariant 

under the action of H2,,. Note that h~ . . . . .  h2,.-, act trivially on v0, therefore an 

element of /-/2,, acts trivially on v 2 . ,  if and only if it acts trivially on 

v, . . . . .  v2,.-2. Choose any P, O E/-/2,.. It suffices to check the action on V2,,-~. 

Let  v be any vector. Then,  using the action just given we have: 

so that 

(v)Pa = (v )P  + eVo, e = 0, + 1, - 1 

(v)PaP = v + ~Vo. 

In a similar way ( v ) Q a Q = v + 3 v o ,  6 = 0 , 1 , - 1 ,  also ( v ) P ~ P = v - e v o ,  

(v)Qti(~ = v - 6Vo. But then ( v )PaPQaOP~PQdO = v, and so [PAP, Qa(~] acts 

trivially on V2,.-1, and hence is trivial in H2~/(c). 

Our  proof of Lemma 14 will be complete if we can show that ker~p, is 

generated by 2m - 2  conjugates of a, each of which has order 3. The assertion 

about  orders is trivial, because a has order 3. The reason is: 

(v , )a=v~ for i = < 2 m - 3 ,  (v2, . -z)a=v2m-z-Vo,  

so (v2,,_2)a 3 = v2,,-2 + 3Vo = v2m-2 (rood 3). So it suffices to find (2m - 2) linearly 

independent  conjugates which generate ker ~p.. Our  candidates are the elements  

a l , . . . ,  a2m-2 of Theorem 11, assertion (11.4), where we note that a2,,-2 is the 

element we have been calling a (remark: see the expression (24) for Tw). The 

action of the a, 's  on I/2,, t are given by 

vj if i > j ,  

( vj )a, = v~ + vo i l l = j o t  j - I ,  

vj if i < j - 1 .  

Suppose a = I I ~  -2 a ?' E ker ~ . .  Then a acts trivially on V2,.-1. The basis vector 

v2.,-2 is only effected by a2,,-2, so m2,~-2 = 0. The basis vector v2,,-3 is effected by 

a~m-3 and a2,,-2, SO m2. , -3  + m2m-2 = 0,  but then m2~-3 = 0. Similarly all m s = 0. 

Thus the aj 's  are linearly independent.  Conversely, choosing m , , . . . ,  m~,._2 in a 

suitable way we get an arbitrary action on V2,,-~, which is trivial rood Vo and 

takes v0 onto itself. But clearly every element  in kernel ~. has this property,  so 

the proof  is complete.  []  

We can now finish the proof of Theorem 11.. The only missing piece (in view of 

Lemmas  12, 13, 14) is to prove  that the exact sequence of L e m m a  14 splits. For 

this it suffices to show that there is a symplectic action of H2.-1 on A = ker ~0.. 
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Let a l , . . . ,  a2,.-2 be as in the proof of Lemma 14 (i.e. as defined in Theorem 11, 

assertion (11.4)). We define an alternating form on ker q~. by (ai, a j )=  1 for all 

i < j. We compute the action of h~ . . . . .  h2,, on A by conjugacy, obtaining: 

aj if i > j + l ,  

a-jcij÷, if i = j + 1, 

(aj)h, = ai-~ if i = j ,  i ~ l ,  

aj if i<j, 
alffl2a3ffla" " " a 2 , n - 3 C 1 2 m - 2  if i = j = 1. 

One can check the equalities by comparing the action of the left and right hand 

sides on the vector space V2,,-~. It is easy to check that the h,'s preserve the 

alternating form. Therefore H2,,-t acts on A by a symplectic action. The element 

( h l h 2 " ' "  h2,.-2) 2"-~ generates the center of H2,,-z and acts non-trivially. Since 

H2m_dcenter = Sp(2m - 2, Z3)/center ~ PSp(2m - 2, Z~) 

is simple, it acts faithfully. This concludes the proof of Theorem 11. [] 

REMARK 11.1. The generators of A which are given in Theorem 11 are 

interesting. As is well-known there is an epimorphism from the symmetric group 

$4 onto the symmetric group $3 with kernel the normal closure N(s,  g3) of s~ g3 in 

&, but no such epimorphism S2m ~ $2,.-~ for any m > 2. Similarly, there is an 

epimorphism B 4 - - - - ) B 3  with kernel N(or16"3), but no such epimorphism 

B2,, ~ B2,,-~ for any m > 2. Theorem 11 shows that there is a family of quotients 

of B,, namely the groups {H2m/(c), H2,,-~; m = 2,3 . . . . .  } and for every m->2  

there is an epimorphism//2,,/(c)---~ H2,~-~, so that if m = 2 the kernel is N(hl/~3), 

while if m > 2 it is N(Tw/~2,,-1), where Tw is the conjugate of h which is identified 
in (11.4) above. 
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